CI/CD with a GitHub webhook trigger in production and a manually-supplied JSON-type input for local testing
Source
id: ci-cd-github-webhook
namespace: company.team
inputs:
- id: payload
type: JSON
tasks:
- id: return
type: io.kestra.plugin.core.debug.Return
format: "{{ trigger.body.pull_request.comments_url ??
inputs.payload.pull_request.comments_url }}"
- id: python_action
type: io.kestra.plugin.scripts.python.Script
taskRunner:
type: io.kestra.plugin.scripts.runner.docker.Docker
containerImage: ghcr.io/kestra-io/pydata:latest
script: |
import requests
import json
url = "{{ outputs.return.value }}"
headers = {
'Authorization': 'token {{ secret('GITHUB_ACCESS_TOKEN') }}',
'Accept': 'application/vnd.github.v3+json'
}
payload = {'body': 'hello from `{{ execution.id }}` in `{{ flow.id }}`'}
response = requests.post(url, headers=headers, json=payload)
if response.status_code == 201:
print("Comment successfully created.")
else:
print(f"Failed to create comment: {response.text}")
triggers:
- id: github
type: io.kestra.plugin.core.trigger.Webhook
key: "{{ secret('WEBHOOK_KEY') }}"
conditions:
- type: io.kestra.plugin.core.condition.Expression
expression: "{{ trigger.body.pull_request.state == 'open' and
trigger.body.pull_request.comments_url }}"
About this blueprint
DevOps Git Task Runner API
This flow can be used as a template to implement a CI/CD pipeline that processes event payload from a GitHub webhook trigger. In this example, any time you open a new Pull Request, the flow will be triggered and the flow will use the payload information to implement custom actions. Here, we simply add a comment to the pull request using the Pull Request's comment URL from the event payload, but your use case might require retrieving information such as branch name, etc.
To facilitate local testing, the expression '{{ trigger.body.pull_request.comments_url ?? inputs.payload.pull_request.comments_url }}'
will make sure that the flow uses a value from the webhook if the flow is triggered via a webhook, and will otherwise use the value from a manually provided input e.g. a JSON payload. This way, you can test the workflow end-to-end using a mock data provided as a JSON-type input before testing it with live data from a webhook.
For more information about this usage pattern, check the following blog post.