Source
yaml
id: hugging_face
namespace: blueprint
inputs:
- id: message_id
type: STRING
tasks:
- id: retrieve_data
type: io.kestra.plugin.jdbc.postgresql.Query
sql: SELECT user_id, message FROM customer.message WHERE message_id = '{{
inputs.message_id }}'
fetchType: FETCH_ONE
- id: classification
type: io.kestra.plugin.huggingface.Inference
model: facebook/bart-large-mnli
apiKey: "{{ secret('HUGGINGFACE_API_KEY') }}"
inputs: "{{ json(outputs.retrieve_data.row).message }}"
parameters:
candidate_labels:
- "support"
- "warranty"
- "upsell"
- "help"
- id: insert_category
type: io.kestra.plugin.jdbc.postgresql.Query
sql: UPDATE customer.message SET category = '{{
json(outputs.classification.output).labels[0] }}' WHERE message_id = '{{
inputs.message_id }}'
pluginDefaults:
- type: io.kestra.plugin.jdbc.postgresql
values:
url: jdbc:postgresql://"{{secret('POSTGRES_HOST')}}"
username: "{{secret('POSTGRES_USERNAME')}}"
password: "{{secret('POSTGRES_PASSWORD')}}"
About this blueprint
SQL AI API
This flow retrieve data from a Postgres database and use the HuggingFace Inference API to classify a customer message.
Documentation about the HugginFace Inference API endpoint and how to create an API key can be find here.
More Related Blueprints