EmbeddingStoreRetriever
EmbeddingStoreRetriever
yaml
type: "io.kestra.plugin.ai.retriever.EmbeddingStoreRetriever"Examples
yaml
id: "embeddingstoreretriever"
type: "io.kestra.plugin.ai.retriever.EmbeddingStoreRetriever"
id: agent_with_rag
namespace: company.ai
tasks:
- id: ingest
type: io.kestra.plugin.ai.rag.IngestDocument
provider:
type: io.kestra.plugin.ai.provider.GoogleGemini
modelName: gemini-embedding-exp-03-07
googleApiKey: "{{ kv('GEMINI_API_KEY') }}"
embeddings:
type: io.kestra.plugin.ai.embeddings.KestraKVStore
drop: true
fromDocuments:
- content: Paris is the capital of France with a population of over 2.1 million people
- content: The Eiffel Tower is the most famous landmark in Paris at 330 meters tall
- id: agent
type: io.kestra.plugin.ai.agent.AIAgent
provider:
type: io.kestra.plugin.ai.provider.GoogleGemini
modelName: gemini-2.0-flash
googleApiKey: "{{ kv('GEMINI_API_KEY') }}"
contentRetrievers:
- type: io.kestra.plugin.ai.retriever.EmbeddingStoreRetriever
embeddings:
type: io.kestra.plugin.ai.embeddings.KestraKVStore
embeddingProvider:
type: io.kestra.plugin.ai.provider.GoogleGemini
modelName: gemini-embedding-exp-03-07
googleApiKey: "{{ kv('GEMINI_API_KEY') }}"
maxResults: 3
minScore: 0.0
prompt: What is the capital of France and how many people live there?
yaml
id: "embeddingstoreretriever"
type: "io.kestra.plugin.ai.retriever.EmbeddingStoreRetriever"
id: multi_store_rag
namespace: company.ai
tasks:
- id: agent
type: io.kestra.plugin.ai.agent.AIAgent
provider:
type: io.kestra.plugin.ai.provider.GoogleGemini
modelName: gemini-2.0-flash
googleApiKey: "{{ kv('GEMINI_API_KEY') }}"
contentRetrievers:
- type: io.kestra.plugin.ai.retriever.EmbeddingStoreRetriever
embeddings:
type: io.kestra.plugin.ai.embeddings.Pinecone
pineconeApiKey: "{{ kv('PINECONE_API_KEY') }}"
index: technical-docs
embeddingProvider:
type: io.kestra.plugin.ai.provider.OpenAI
googleApiKey: "{{ kv('OPENAI_API_KEY') }}"
modelName: text-embedding-3-small
- type: io.kestra.plugin.ai.retriever.EmbeddingStoreRetriever
embeddings:
type: io.kestra.plugin.ai.embeddings.Qdrant
host: localhost
port: 6333
collectionName: business-docs
embeddingProvider:
type: io.kestra.plugin.ai.provider.GoogleGemini
modelName: gemini-embedding-exp-03-07
googleApiKey: "{{ kv('GEMINI_API_KEY') }}"
- type: io.kestra.plugin.ai.retriever.TavilyWebSearch
tavilyApiKey: "{{ kv('TAVILY_API_KEY') }}"
prompt: What are the latest trends in data orchestration?
Properties
embeddingProvider *RequiredNon-dynamic
Definitions
Use Amazon Bedrock models
accessKeyId*Requiredstring
modelName*Requiredstring
secretAccessKey*Requiredstring
baseUrlstring
caPemstring
clientPemstring
modelTypestring
Default
COHEREPossible Values
COHERETITANtypeobject
Possible Values
io.kestra.plugin.ai.provider.AmazonBedrockio.kestra.plugin.langchain4j.provider.AmazonBedrockUse Anthropic Claude models
apiKey*Requiredstring
modelName*Requiredstring
baseUrlstring
caPemstring
clientPemstring
maxTokensintegerstring
typeobject
Possible Values
io.kestra.plugin.ai.provider.Anthropicio.kestra.plugin.langchain4j.provider.AnthropicUse Azure OpenAI deployments
endpoint*Requiredstring
modelName*Requiredstring
apiKeystring
baseUrlstring
caPemstring
clientIdstring
clientPemstring
clientSecretstring
serviceVersionstring
tenantIdstring
typeobject
Possible Values
io.kestra.plugin.ai.provider.AzureOpenAIio.kestra.plugin.langchain4j.provider.AzureOpenAIUse DashScope (Qwen) models
apiKey*Requiredstring
modelName*Requiredstring
baseUrlstring
Default
https://dashscope-intl.aliyuncs.com/api/v1caPemstring
clientPemstring
enableSearchbooleanstring
maxTokensintegerstring
repetitionPenaltynumberstring
typeobject
Use DeepSeek models
apiKey*Requiredstring
modelName*Requiredstring
baseUrlstring
Default
https://api.deepseek.com/v1caPemstring
clientPemstring
typeobject
Possible Values
io.kestra.plugin.ai.provider.DeepSeekio.kestra.plugin.langchain4j.provider.DeepSeekUse GitHub Models via Azure AI Inference
gitHubToken*Requiredstring
modelName*Requiredstring
baseUrlstring
caPemstring
clientPemstring
typeobject
Use Google Gemini models
apiKey*Requiredstring
modelName*Requiredstring
baseUrlstring
caPemstring
clientPemstring
embeddingModelConfiguration
io.kestra.plugin.ai.provider.GoogleGemini-EmbeddingModelConfiguration
maxRetriesintegerstring
outputDimensionalityintegerstring
taskTypestring
Possible Values
RETRIEVAL_QUERYRETRIEVAL_DOCUMENTSEMANTIC_SIMILARITYCLASSIFICATIONCLUSTERINGQUESTION_ANSWERINGFACT_VERIFICATIONtimeoutstring
titleMetadataKeystring
typeobject
Possible Values
io.kestra.plugin.ai.provider.GoogleGeminiio.kestra.plugin.langchain4j.provider.GoogleGeminiUse Google Vertex AI models
endpoint*Requiredstring
location*Requiredstring
modelName*Requiredstring
project*Requiredstring
baseUrlstring
caPemstring
clientPemstring
typeobject
Possible Values
io.kestra.plugin.ai.provider.GoogleVertexAIio.kestra.plugin.langchain4j.provider.GoogleVertexAIUse Hugging Face Inference endpoints
apiKey*Requiredstring
modelName*Requiredstring
baseUrlstring
Default
https://router.huggingface.co/v1caPemstring
clientPemstring
typeobject
Use LocalAI OpenAI-compatible server
baseUrl*Requiredstring
modelName*Requiredstring
caPemstring
clientPemstring
typeobject
Possible Values
io.kestra.plugin.ai.provider.LocalAIio.kestra.plugin.langchain4j.provider.LocalAIUse Mistral models
apiKey*Requiredstring
modelName*Requiredstring
baseUrlstring
caPemstring
clientPemstring
typeobject
Possible Values
io.kestra.plugin.ai.provider.MistralAIio.kestra.plugin.langchain4j.provider.MistralAIUse OCI Generative AI models
compartmentId*Requiredstring
modelName*Requiredstring
region*Requiredstring
authProviderstring
baseUrlstring
caPemstring
clientPemstring
typeobject
Use local Ollama models
endpoint*Requiredstring
modelName*Requiredstring
baseUrlstring
caPemstring
clientPemstring
typeobject
Possible Values
io.kestra.plugin.ai.provider.Ollamaio.kestra.plugin.langchain4j.provider.OllamaUse OpenAI models
apiKey*Requiredstring
modelName*Requiredstring
baseUrlstring
Default
https://api.openai.com/v1caPemstring
clientPemstring
typeobject
Possible Values
io.kestra.plugin.ai.provider.OpenAIio.kestra.plugin.langchain4j.provider.OpenAIUse OpenRouter models
apiKey*Requiredstring
modelName*Requiredstring
baseUrlstring
caPemstring
clientPemstring
typeobject
Possible Values
io.kestra.plugin.ai.provider.OpenRouterio.kestra.plugin.langchain4j.provider.OpenRouterUse IBM watsonx.ai models
apiKey*Requiredstring
modelName*Requiredstring
projectId*Requiredstring
baseUrlstring
caPemstring
clientPemstring
typeobject
Use Cloudflare Workers AI models
accountId*Requiredstring
apiKey*Requiredstring
modelName*Requiredstring
baseUrlstring
caPemstring
clientPemstring
typeobject
Possible Values
io.kestra.plugin.ai.provider.WorkersAIio.kestra.plugin.langchain4j.provider.WorkersAIUse ZhiPu AI models
apiKey*Requiredstring
modelName*Requiredstring
baseUrlstring
Default
https://open.bigmodel.cn/caPemstring
clientPemstring
maxRetriesintegerstring
maxTokenintegerstring
stopsarray
SubTypestring
typeobject
embeddings *RequiredNon-dynamic
Definitions
Store embeddings in Chroma
baseUrl*Requiredstring
collectionName*Requiredstring
typeobject
Possible Values
io.kestra.plugin.ai.embeddings.Chromaio.kestra.plugin.langchain4j.embeddings.ChromaStore embeddings in Elasticsearch
connection*Required
io.kestra.plugin.ai.embeddings.Elasticsearch-ElasticsearchConnection
hosts*Requiredarray
SubTypestring
Min items
1basicAuth
io.kestra.plugin.ai.embeddings.Elasticsearch-ElasticsearchConnection-BasicAuth
passwordstring
usernamestring
headersarray
SubTypestring
pathPrefixstring
strictDeprecationModebooleanstring
trustAllSslbooleanstring
indexName*Requiredstring
typeobject
Possible Values
io.kestra.plugin.ai.embeddings.Elasticsearchio.kestra.plugin.langchain4j.embeddings.ElasticsearchPrototype embeddings in Kestra KV
kvNamestring
Default
{{flow.id}}-embedding-storetypeobject
Possible Values
io.kestra.plugin.ai.embeddings.KestraKVStoreio.kestra.plugin.langchain4j.embeddings.KestraKVStoreStore embeddings in MariaDB
createTable*Requiredbooleanstring
databaseUrl*Requiredstring
fieldName*Requiredstring
password*Requiredstring
tableName*Requiredstring
username*Requiredstring
columnDefinitionsarray
SubTypestring
indexesarray
SubTypestring
metadataStorageModestring
Default
COLUMN_PER_KEYtypeobject
Store embeddings in Milvus
token*Requiredstring
autoFlushOnDeletebooleanstring
autoFlushOnInsertbooleanstring
collectionNamestring
consistencyLevelstring
databaseNamestring
hoststring
idFieldNamestring
indexTypestring
metadataFieldNamestring
metricTypestring
passwordstring
portintegerstring
retrieveEmbeddingsOnSearchbooleanstring
textFieldNamestring
typeobject
Possible Values
io.kestra.plugin.ai.embeddings.Milvusio.kestra.plugin.langchain4j.embeddings.Milvusuristring
usernamestring
vectorFieldNamestring
Store embeddings in MongoDB Atlas
collectionName*Requiredstring
host*Requiredstring
indexName*Requiredstring
scheme*Requiredstring
createIndexbooleanstring
databasestring
metadataFieldNamesarray
SubTypestring
optionsobject
passwordstring
typeobject
Possible Values
io.kestra.plugin.ai.embeddings.MongoDBAtlasio.kestra.plugin.langchain4j.embeddings.MongoDBAtlasusernamestring
Store embeddings with pgvector
database*Requiredstring
host*Requiredstring
password*Requiredstring
port*Requiredintegerstring
table*Requiredstring
user*Requiredstring
typeobject
Possible Values
io.kestra.plugin.ai.embeddings.PGVectorio.kestra.plugin.langchain4j.embeddings.PGVectoruseIndexbooleanstring
Default
falseStore embeddings in Pinecone
apiKey*Requiredstring
cloud*Requiredstring
index*Requiredstring
region*Requiredstring
namespacestring
typeobject
Possible Values
io.kestra.plugin.ai.embeddings.Pineconeio.kestra.plugin.langchain4j.embeddings.PineconeStore embeddings in Qdrant
apiKey*Requiredstring
collectionName*Requiredstring
host*Requiredstring
port*Requiredintegerstring
typeobject
Possible Values
io.kestra.plugin.ai.embeddings.Qdrantio.kestra.plugin.langchain4j.embeddings.QdrantStore embeddings in Redis
host*Requiredstring
port*Requiredintegerstring
indexNamestring
Default
embedding-indextypeobject
Store embeddings in Alibaba Tablestore
accessKeyId*Requiredstring
accessKeySecret*Requiredstring
endpoint*Requiredstring
instanceName*Requiredstring
metadataSchemaListarray
com.alicloud.openservices.tablestore.model.search.FieldSchema
analyzerstring
Possible Values
SingleWordMaxWordMinWordSplitFuzzyanalyzerParameter
com.alicloud.openservices.tablestore.model.search.analysis.AnalyzerParameter
dateFormatsarray
SubTypestring
enableHighlightingboolean
enableSortAndAggboolean
fieldNamestring
fieldTypestring
Possible Values
LONGDOUBLEBOOLEANKEYWORDTEXTNESTEDGEO_POINTDATEVECTORFUZZY_KEYWORDIPJSONUNKNOWNindexboolean
indexOptionsstring
Possible Values
DOCSFREQSPOSITIONSOFFSETSisArrayboolean
jsonTypestring
Possible Values
FLATTENNESTEDsourceFieldNamesarray
SubTypestring
storeboolean
subFieldSchemasarray
com.alicloud.openservices.tablestore.model.search.FieldSchema
analyzerstring
Possible Values
SingleWordMaxWordMinWordSplitFuzzyanalyzerParameter
dateFormatsarray
SubTypestring
enableHighlightingboolean
enableSortAndAggboolean
fieldNamestring
fieldTypestring
Possible Values
LONGDOUBLEBOOLEANKEYWORDTEXTNESTEDGEO_POINTDATEVECTORFUZZY_KEYWORDIPJSONUNKNOWNindexboolean
indexOptionsstring
Possible Values
DOCSFREQSPOSITIONSOFFSETSisArrayboolean
jsonTypestring
Possible Values
FLATTENNESTEDsourceFieldNamesarray
SubTypestring
storeboolean
subFieldSchemasarray
vectorOptions
vectorOptions
com.alicloud.openservices.tablestore.model.search.vector.VectorOptions
dataTypestring
dimensioninteger
metricTypestring
Possible Values
EUCLIDEANCOSINEDOT_PRODUCTtypeobject
Store embeddings in Weaviate
apiKey*Requiredstring
host*Requiredstring
avoidDupsbooleanstring
consistencyLevelstring
Possible Values
ONEQUORUMALLgrpcPortintegerstring
metadataFieldNamestring
metadataKeysarray
SubTypestring
objectClassstring
portintegerstring
schemestring
securedGrpcbooleanstring
typeobject
Possible Values
io.kestra.plugin.ai.embeddings.Weaviateio.kestra.plugin.langchain4j.embeddings.WeaviateuseGrpcForInsertsbooleanstring
maxResults integerstring
Default
3minScore numberstring
Default
0.0