Pebble Templating Engine
Dynamically render variables, inputs and outputs.
Pebble is a Java templating engine inspired by Twig and similar to the Python Jinja Template Engine syntax. Kestra uses it to dynamically render variables, inputs and outputs within the execution context.
Reading inputs
When using inputs
property in a Flow, you can access the corresponding values just by using inputs
variable in your tasks.
id: input_string
namespace: company.team
inputs:
- id: name
type: STRING
tasks:
- id: say_hello
type: io.kestra.plugin.core.log.Log
message: "Hello 👋, my name is {{ inputs.name }}"
Reading task ouputs
Most of Kestra's tasks expose output values. You can access those outputs in other tasks by using outputs.<task_name>.<output_name>
. Every task output can be found in the corresponding task documentation.
In the example below, we use the value
outputs of the io.kestra.plugin.core.debug.Return
task in the downstream task.
id: input_string
namespace: company.team
inputs:
- id: name
type: STRING
tasks:
- id: say_hello
type: io.kestra.plugin.core.debug.Return
format: "Hello 👋, my name is {{ inputs.name }}"
- id: can_you_repeat
type: io.kestra.plugin.core.log.Log
message: '{{ outputs.say_hello.value }}'
Dynamically render a task with TemplatedTask
Since Kestra 0.16.0, you can use the TemplatedTask
task which allows you to fully template all task properties using Pebble. This way, all task properties and their values can be dynamically rendered based on your custom inputs, variables, and outputs from other tasks.
Here is an example of how to use the TemplatedTask to create a Databricks job using dynamic properties:
id: templated_databricks_job
namespace: company.team
inputs:
- id: host
type: STRING
- id: clusterId
type: STRING
- id: taskKey
type: STRING
- id: pythonFile
type: STRING
- id: sparkPythonTaskSource
type: ENUM
defaults: WORKSPACE
values:
- GIT
- WORKSPACE
- id: maxWaitTime
type: STRING
defaults: "PT30M"
tasks:
- id: templated_spark_job
type: io.kestra.plugin.core.templating.TemplatedTask
spec: |
type: io.kestra.plugin.databricks.job.CreateJob
authentication:
token: "{{ secret('DATABRICKS_API_TOKEN') }}"
host: "{{ inputs.host }}"
jobTasks:
- existingClusterId: "{{ inputs.clusterId }}"
taskKey: "{{ inputs.taskKey }}"
sparkPythonTask:
pythonFile: "{{ inputs.pythonFile }}"
sparkPythonTaskSource: "{{ inputs.sparkPythonTaskSource }}"
waitForCompletion: "{{ inputs.maxWaitTime }}"
Note how in this example, the waitForCompletion
property is templated using Pebble even though that property is not dynamic. The same is true for the sparkPythonTaskSource
property. Without the TemplatedTask
task, you would not be able to pass those values from inputs.
Date formatting
Pebble can be very useful to make small transformation on the fly - without the need to use Python or some dedicated programming language.
For instance, we can use the date
filter to format date values: '{{ inputs.my_date | date("yyyyMMdd") }}'
Coalesce operator to conditionally use trigger or execution date
Most of the time, a flow will be triggered automatically. Either on schedule or based on external events. It’s common to use the date of the execution to process the corresponding data and make the flow dependent on time.
With Pebble you can use the trigger.date
to get the date of the executed trigger.
Still, sometimes you want to manually execute a flow. Then the trigger.date
variable won’t work anymore. For this you can use the execution.startDate
variable that returns the execution start date.
To support both use cases, use the coalesce operator ??
. The example below shows how to apply it in a flow.
id: pebble_date_trigger
namespace: company.team
tasks:
- id: return_date
type: io.kestra.plugin.core.debug.Return
format: '{{ trigger.date ?? execution.startDate | date("yyyy-MM-dd")}}'
triggers:
- id: schedule
type: io.kestra.plugin.core.trigger.Schedule
cron: "* * * * *"
Parsing objects & lists using jq
Sometimes, outputs return nested objects or lists. To parse those elements, you may leverage jq
. You can use jQuery to slice, filter, map, and transform structured data with the same ease that sed
, awk
, grep
, and similar Linux commands let you manipulate strings.
Consider the following flow:
id: object_example
namespace: company.team
inputs:
- id: data
type: JSON
defaults: '{"value": [1, 2, 3]}'
tasks:
- id: hello
type: io.kestra.plugin.core.log.Log
message: "{{ inputs.data }}"
The expression {{ inputs.data.value }}
will return the list [1, 2, 3]
The expression {{ inputs.data.value | jq(".[1]") | first }}
will return 2
.
jq(".[1]")
accesses the second value of the list and returns an array with one element. We then use first
to access the value itself.
Note: we could have used
{{ inputs | jq(".data.value[1]") | first }}
, jq allows to parse any object in Kestra context.
You can troubleshoot complex Pebble expressions using the Debug Outputs button in the outputs tab of a Flow execution page in the UI. It's helpful to validate how complex objects will be parsed.
Using conditions in Pebble
In some tasks, such as the If
or Switch
tasks, you will need to provide some conditions. You can use the Pebble syntax to use previous task outputs within those conditions:
id: test-object
namespace: company.team
inputs:
- id: data
type: JSON
defaults: '{"value": [1, 2, 3]}'
tasks:
- id: if
type: io.kestra.plugin.core.flow.If
condition: '{{ inputs.data.value | jq(".[2]") | first == 3}}'
then:
- id: when_true
type: io.kestra.plugin.core.log.Log
message: 'Condition was true'
else:
- id: when_false
type: io.kestra.plugin.core.log.Log
message: 'Condition was false'
Was this page helpful?