Milvus Embedding Store

yaml
type: "io.kestra.plugin.ai.embeddings.Milvus"

Ingest documents into a Milvus embedding store.

yaml
id: document-ingestion
namespace: company.team

tasks:
  - id: ingest
    type: io.kestra.plugin.ai.rag.IngestDocument
    provider:
      type: io.kestra.plugin.ai.provider.GoogleGemini
      modelName: gemini-embedding-exp-03-07
      apiKey: "{{ secret('GEMINI_API_KEY') }}"
    embeddings:
      type: io.kestra.plugin.ai.embeddings.Milvus
      token: "{{ secret('MILVUS_TOKEN') }}"
      uri: "http://localhost:19200"
      collectionName: embeddings
    fromExternalURLs:
      - https://raw.githubusercontent.com/kestra-io/docs/refs/heads/main/content/blogs/release-0-22.md
Properties

The token

Whether to auto flush on delete

Whether to auto flush on insert

The collection name

If there is no such collection yet, it will be created automatically. Default value: "default".

The consistency level

The database name

If not provided, the default database will be used.

The host

Default value: "localhost"

The id field name

The index type

The metadata field name

The metric type

The password

If user authentication and TLS is enabled, this parameter is required. See: https://milvus.io/docs/authenticate.md

The port

Default value: "19530"

Whether to retrieve embeddings on search

The text field name

The uri

The username

If user authentication and TLS is enabled, this parameter is required. See: https://milvus.io/docs/authenticate.md

The vector field name